

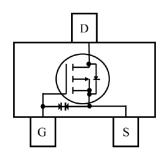
SSC8021GS8

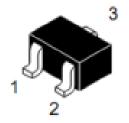
P-Channel Enhancement Mode MOSFET with ESD Protection

> Features

VDS	VGS	RDSON Typ.	ID	ESD
201/	.42)/	0.6R@-4V5	4.0	2147
-20V	±12V	0.8R@-2V5	-1A	2kV

> Description


This device is produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage such applications as portable equipment, power management and other battery powered circuits, and low in-line power dissipation are needed in a very small outline surface mount package. The product does not contain Rohs substances such as lead and halogen.


Applications

- Load Switch
- Portable Devices
- DCDC conversion

> Pin configuration

Top view

SOT523

Marking

> Ordering Information

Device	Package	Shipping
SSC8021GS8	SOT523	3000/Reel

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V_{DSS}	Drain-to-Source Voltage	-20	V
V _{GSS}	Gate-to-Source Voltage	±12	V
lo	Continuous Drain Current ^a	-1	Α
Ірм	Pulsed Drain Current ^b	-2.7	Α
PD	Power Dissipation ^c	0.36	W
P _{DSM}	Power Dissipation ^a	0.22	W
TJ	Operation junction temperature	-55 to 150	°C
Тѕтс	Storage temperature range	-55 to 150	°C

➤ Thermal Resistance Ratings($T_A=25^{\circ}$ C unless otherwise noted)

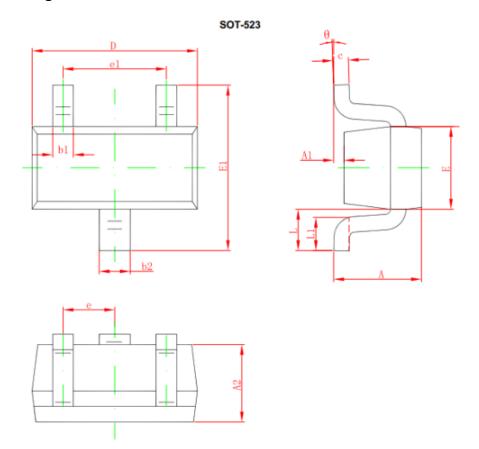
Symbol	Parameter	Typical	Maximum	Unit
R _{0JA}	Junction-to-Ambient Thermal Resistance		568	°C/W
Rejc	Junction-to-Case Thermal Resistance		347	C/ VV

Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A =25 C° . The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

➤ Electronics Characteristics(T_A=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=-250uA	-20			V
V _{GS} (th)	Gate Threshold Voltage	VDS=VGS,ID=-250uA	-0.5	-0.7	-1	V
Б	Drain-Source On-	VGS=-4.5V,ID=-0.5A		600	750	1
R _{DS(on)}	Resistance	VGS=-2.5V,ID=-0.5A		800	1000	mR
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-16V,VGS=0V			-1	uA
I _{GSS}	Gate-Source leak	VGS=±12V,VDS=0V			±10	uA
G _{FS}	Transconductance	VDS=-5V,ID=-0.45A		1.5		S
V _{SD}	Forward Voltage	VGS=0V,IS=-0.15A			-1.2	٧
Ciss	Input Capacitance			105		
Coss	Output Capacitance	VDS=10V, VGS=0V, F=200KHZ		22		pF
Crss	Reverse Transfer Capacitance			18		
T _{D(ON)}	Turn-on delay			54		
Tr	Rise time	VGS=6V,		85		
T _{D(OFF)}	Turn-off delay time	VGEN=4.5V, RL=6R, RG=6R,ID=0.5A		890		ns
Tf	Fall time			176		



➤ Typical Characteristics(T_A=25°C unless otherwise noted)

> Package Information

Cumbal	Dimension in Millimeters		
Symbol	Min.	Max.	
Α	0.700	0.900	
A1	0.000	0.100	
A2	0.700	0.800	
b1	0.150	0.250	
b2	0.250	0.350	
С	0.100	0.200	
D	1.500	1.700	
E	0.700	0.900	
E1	1.450	1.750	
е	0.500 Typ.		
e1	0.900 1.100		
L	0.400 Ref.		
L1	0.260	0.460	
θ	0° 8°		

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.